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Abstract. I discuss the charmonium suppression in deconfined medium by thermal dissociation and parton
percolation. I point out the differences and show predictions for J/ψ suppression at different energy and/or
for different interacting nuclei.

1 Introduction

The behavior of J/ψ mesons in a hot strongly interacting
medium was proposed as a test for its confinement status
[1]: it was argued that the J/ψ, due to its small size and
strong binding energy, cannot break up as a consequence
of interactions with normal hadrons, while in a deconfined
medium, the color screening dissolves the cc̄ bond.

After this proposal, the study of the charmonium sup-
pression in heavy ion collisions has aroused a lot of in-
terest. With a careful and extensive analysis of the ex-
perimental data for different interacting systems (from
proton–proton to proton–nucleus and nucleus–nucleus col-
lisions) it has been possible to observe a “normal” suppres-
sion of the J/ψ meson, presumably due to the absorption
of the preresonant cc̄ state in the nuclear medium, in all
interactions up to S–U collisions and peripheral Pb–Pb.
In central Pb–Pb collisions a stronger suppression is ob-
served [2], suggesting that a new suppression mechanism
is at work in these events.

The aim of this work is to present an interpretation of
the “anomalous” J/ψ suppression as a consequence of a
deconfinement transition, in the framework of two models,
thermal dissociation and parton percolation. I will focus
on cc̄ states, but all the considerations presented here ap-
ply to the bb̄ case as well.

A few general remarks are necessary before presenting
the theoretical models.

It is known from proton–nucleon and pion–nucleon [4]
(and, more recently, from electron–proton [5]) interactions
that a large fraction (about 30%–40%) of the observed
J/ψ’s are the decay products of higher excited states of
cc̄ pairs (ψ′, χ). Since the life-time of these quarkonium
states is much larger than the typical life-time of the medi-
um which is produced in the nucleus–nucleus collisions,
they decay presumably in the vacuum. Therefore this
medium (either hadronic gas or quark–gluon plasma) sees
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not only the ground state quarkonium, but also the dif-
ferent excited states, which have different properties (size,
binding energies) and different behavior: a smaller bind-
ing energy (and, consequently, a larger radius) requires a
lower dissolution temperature, in the case of a deconfined
medium; on the other hand, for the case of a hadronic
system, a weakly bound quarkonium state has a larger
break-up cross-section for interactions with the other par-
ticles.

Therefore the final J/ψ survival probability, to be com-
pared to the experimental data, has to be calculated as
an average over the different components, each of them
weighted with the corresponding fraction of contribution
to the observed J/ψ’s in the final state:

SJ/ψ = fJ/ψS
dir
J/ψ + fχS

dir
χ + fψ′Sdir

ψ′ . (1)

This fact has a very important consequence on the pattern
of the J/ψ suppression as a function of the centrality and
of the energy collisions and it must be considered for a
careful comparison to experimental data.

2 Thermal dissociation

In sufficiently hot deconfined matter, color screening dis-
solves the binding of the quark–antiquark pair, and a
stronger binding energy requires a higher temperature to
be dissolved. On a microscopic level, it was argued that
only a hot medium provides sufficiently hard gluons to dis-
sociate the quark–antiquark bound state, and this again
implies a dissociation hierarchy as a function of the bind-
ing energy. Another possible mechanism is the decay into
open charm mesons due to in-medium modification of
mesonic masses [3].

Implicit, in this approach, is the assumption that the
medium probed by the quarkonium state is in thermal
equilibrium. Lattice studies show that the transition be-
tween confined and deconfinement medium occurs at the
critical temperature Tc � 150–200 MeV.
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Fig. 1. The heavy quark potential below Tc at different tem-
peratures [8]

2.1 Quarkonium dissociation below deconfinement

The large values of the charm (and bottom) quark mass
allows potential theory to describe quite accurately the
quarkonium spectroscopy [6]. At zero temperature, a phe-
nomenologically successful description is given by the Cor-
nell potential [7]:

V (r) =
a

r
+ σr . (2)

More generally, a precise form for the potential is ob-
tained, at any temperature, from first principle QCD with
lattice calculations [8]. The potential is related to the Poly-
akov loop L(r), calculable on lattice, by

V (r, T ) = − log〈L(r)L†(0)〉 + C , (3)

where C is a normalization constant. In absence of dy-
namical quarks, V (r, T ) is linearly rising for large r; if
dynamical quarks are present, one expects that at a dis-
tance r such that V (r, T ) is equal to twice the mass of a
light quark, the string between the heavy quarks breaks,
a pair of light quarks qq̄ is produced, and the quarkonium
decays in a pair of charmed mesons (QQ̄ → Qq̄ + Q̄q).

At very short distances medium effects are not im-
portant; therefore, for very small r, the potential should
always be of the form of (2). In [3] the constant C was
determined by imposing that, at any temperature below
Tc, the potential given by lattice calculation reproduce the
Cornell form for r → 0. The results are shown in Fig. 1. It
is evident that the asymptotic value V∞(T ), for r → ∞,
decreases rapidly approaching the critical temperature, as
shown more clearly in Fig. 2.

At any temperature T , a functional form of the heavy
quark potential can be obtained by fitting the lattice re-
sults: this potential can then be used in the Schrödinger
equation to calculate the binding energy (i.e. the mass)
of the ground state and of the first excited states of the
QQ̄ pair. The results for the J/ψ (1s), χ (1p) and ψ′ (2s)
states are shown in Fig. 3 (from [3]) as a function of the
temperature. In the same figure the solid line represents
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Fig. 2. The asymptotic value of the heavy quark potential
below deconfinement. Points are the lattice results [8], the line
is a fit [3]
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Fig. 3. The open charm threshold (solid line) and the char-
monia masses (dashed lines) as a function of the temperature,
below Tc [3]

V∞(T ), as obtained from the fit shown in Fig. 1: when the
mass of a given cc̄ bound state is larger than V∞(T ), the
dissociation into a pair of charmed mesons is energetically
favored. One therefore concludes that the ψ′ is so weakly
bound that it dissolves already at low temperatures, while
the χ requires T � 0.75Tc; the J/ψ, on the contrary, seems
to survive up to the critical temperature.

2.2 Quarkonium dissociation in a deconfined medium

Above the critical temperature Tc one defines the constant
C in such a way that the color average potential vanishes
at large distances, as shown in Fig. 4. It is also evident
that the value r0(T ) at which V (r, T ) vanishes decreases
rapidly with increasing T (thick line of Fig. 5).

The color average potential calculated on the lattice
is the thermal average of the color singlet and color octet
contributions:
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exp
{

−V (r, T )
T

}

=
1
9

exp
{

−V1(r, T )
T

}
+

8
9

exp
{

−V8(r, T )
T

}
. (4)

Assuming for the singlet and the octet potential, re-
spectively, the following forms (valid at leading order in
perturbation theory):

V1(r, T ) = −4
3
α(T )
r

exp{−µ(T )r}, (5)

V8(r, T ) =
c(T )

6
α(T )
r

exp{−µ(T )r}, (6)

one can fit the lattice results and extract the singlet poten-
tial. The temperature-dependent coefficient c(T ) has been
included to take into account the strong non-perturbative
effects just above Tc; for T � Tc one expects that c(T ) � 1
and the usual 1 : 8 ratio between singlet and octet com-
ponents is recovered.

To see whether quarkonium bound states can exist
above the critical temperature, one solves the Schrödinger
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Fig. 6. The J/ψ suppression pattern as a function of the tem-
perature, assuming 57% of directly produced J/ψ’s, 35% and
8% of feed-down from χc’s and ψ′’s

equation with the V1 potential (V8 is repulsive):
{

2m+
1
m
∆+ V1(r)

}
ψi = Miψi . (7)

A relevant piece of information that is obtained from
(7) is the radius ri of the quarkonium bound state: when
ri(T ) is larger than the screening distance of the medium
1/µ(T ) the corresponding bound state dissolves. Figure 5
shows that for the J/ψ this happens at about 1.1Tc, while
the Υ survives up to temperatures well above 2Tc.

The consequent J/ψ suppression pattern, assuming
that 35% and 8% of the observed J/ψ’s come from χ and
ψ′ decays respectively, is similar to what shown in Fig. 6
as a function of the temperature. One should assume some
model to relate the temperature to some experimental ob-
servable, in order to study the suppression as a function
of the centrality of the collision, and what is obtained is
a “two-step” pattern, which will be smoothed by fluctua-
tion of the number of participants (or any other relevant
observable) with the impact parameter. If the colliding nu-
clei are not heavy enough, it is possible that only the first
threshold is reached; the second step therefore will not be
present. But, on the other hand, if the incident energy of
the collision is very high, it is also possible that the two
steps occur for very peripheral collisions and very close to
each other (i.e. in a small range of impact parameter) so
that they cannot be easily resolved.

3 Parton percolation

Hadrons are made by partons. When two or more hadrons
overlap, their partons interact. In a normal hadron–
hadron interaction, the overlapping phase is so short in
time that the partons separate again into hadrons be-
fore reaching an equilibrium condition. On the other hand,
in a nucleus–nucleus collision, the number of interacting
hadrons is so high that their partons can interact several
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times, they therefore lose their “identity”, so that they
do not belong anymore to a particular hadron but form a
big cluster of deconfined medium: the quark–gluon plasma
(QGP).

The percolation theory is a mathematical tool which
studies how simple objects form clusters; there are appli-
cations of the percolation idea in many physical problems
and the deconfinement transition in strongly interacting
matter is one of them. For instance, in [9] hadrons interact
by exchanging color strings. When many hadrons interact
simultaneously in a small space-time region, these strings
overlap and, when their density reaches a critical value,
they percolate. The model of hadron interaction based on
color string exchange (below the percolation threshold) is
able to reproduce many features of experimental data (see
references in [9]). This model therefore interpolates nicely
from interactions in a normal hadronic medium and de-
confined matter.

A similar approach was followed in [10]: a model of
string fusion and percolation is used to describe several
experimental observables, including J/ψ suppression.

The work of [11–13] is essentially focused on J/ψ sup-
pression by parton percolation, inspired by lattice results
where it was shown that the deconfined transition in SU(2)
gauge theory can be described by percolation of Polyakov
loops [14].

Parton percolation is an essential prerequisite for QGP
formation. It should be noted that thermal equilibrium is
not required and this is a main difference with respect to
the approach described in Sect. 2.

3.1 Basic concepts of percolation

Consider a two-dimensional circular region of radius R
on which N small discs of radius r � R are randomly
distributed. When two or more small discs overlap, they
form clusters. The cluster size increases with increasing
n = N/πr2, the average disc density, and this cluster for-
mation shows critical behavior: in the limit N → ∞ and
R → ∞, with n finite, the cluster size diverges at the
critical density nc, given by

nc =
νc

πr2
, (8)

where the critical coefficient νc � 1.13 has been deter-
mined by numerical calculations. In a finite system, the
cluster size increases very rapidly as a function of the fill-
ing factor ν = nπr2 = Nr2/R2, at the percolation onset,
as shown in Fig. 7, where the location of the critical filling
factor νc is indicated by an arrow.

The percolation onset is defined as the point at which
the growth of the cluster is more rapid [11], i.e. where its
derivative with respect to ν picks (dashed line of Fig. 7).
This definition is appropriate for a finite system and it is
an obvious generalization of the more traditional defini-
tion for an infinite region.
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Fig. 7. Cluster size (solid line) and its derivative as a function
of the filling factor, from [12]

3.2 Percolation in high energy nuclear collisions

The above considerations apply to a nucleus–nucleus col-
lision if one makes the following assumptions: the over-
lapping objects, forming clusters, are colored partons and
the two-dimensional space where they are distributed is
the transverse plane projection of the overlapping region
of the two incident nuclei. If the collision is central (impact
parameter b = 0), the overlapping region is circular, as in
the example discussed above. In the case of a collision at
b > 0, the overlapping region will be almond-shaped and
the geometry of the collision will be a little more compli-
cated, but all the considerations presented here are valid.
A parton cluster represents a region in which color charges
can move freely: if it extends over the entire region, one
has, by definition, color deconfinement.

In high energy nuclear collisions there is one additional
difficulty: the partons are emitted by the interacting nu-
cleons, therefore their distribution is not uniform in the
transverse plane, but rather reflects the original distribu-
tion of the initial nucleons, with a higher concentration
in the center than near the surface of the nucleus. It is
possible that in a given collision, only the most central
region of the produced medium is dense and hot enough
to allow for the deconfinement transition. In this situation
a local definition of percolation, as the one used in [12],
is more appropriate. At the onset of percolation, the par-
ton density m in the largest cluster is slightly larger than
the overall average density n; in fact, numerical studies
show that at the critical density nc, the density in the
largest cluster reaches m ≡ mc = ηc/πr2 � 1.72/πr2:
this value provides the local percolation condition: if the
parton density at a certain point exceeds this value, the
corresponding cluster percolates and the medium, in the
region occupied by it, is deconfined. The relevance of this
local percolation condition for the J/ψ suppression in nu-
clear collisions is evident: the J/ψ meson is very small and
therefore it is sensitive to the properties of a small spatial
region and, moreover, it allows for the deconfined mat-
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ter to be produced only in a limited part of the produced
medium.

Having specified the objects which form clusters, the
partons, one has to describe their distribution in space to
apply the percolation idea to nuclear collisions. Since these
partons are emitted by the incident nucleons as a conse-
quence of the strong interactions during the first stages
of the nuclear collision, it is reasonable to assume that
their number and spatial distribution is determined by the
participating nucleons from which they originate, as done
in [12,13]. Therefore the density of partons is given by
the product of the participating nucleon density ns(b, A)
(which depends on the nucleus A and on the impact pa-
rameter of the collision) and the number of partons per
nucleon dNq(x,Q2)/dy (the parton distribution function,
known from deep inelastic scattering experiments). The
fraction x of the nucleon momentum carried by the par-
ton is related to the incident energy

√
s by x = (kT/

√
s)

(at midrapidity); kT is the average transverse momentum
of the parton and it is inversely proportional to its trans-
verse size. The global percolation condition is then given
by

ns(A, b)
(

dNq(x,Q2
c)

dy

)∣∣∣∣
x=Qc/

√
s

=
νc

(π/Q2
c)
. (9)

Equation (9) can be solved numerically to obtain for
what value of A at a given

√
s percolation sets in (or, vice

versa, for which energy percolation can occur in collisions
of nuclei with a given atomic number A) and the value of
Qc at the percolation point.

From a local point of view, the density of the largest
cluster at the percolation point gives the local percolation
condition: mc(A, b) = ηc/(π/Q2

c). With these ingredients,
the authors of [13] find that the critical cluster density is
reached, in Pb–Pb collisions at SPS, at b � 8 fm and the
corresponding value of the average transverse momentum
of the partons is Qc � 0.7 GeV. The scales of the charmo-
nium states χc and ψ′, given by the inverse of their radii
calculated in potential theory, are about 0.6 and 0.5 GeV
respectively: they are therefore dissociated at the onset of
percolation. On the other hand, directly produced J/ψ’s
have smaller radii; therefore the average transverse mo-
mentum of the deconfined partons must be at least 0.9–
1.0 GeV to resolve them, so only a denser medium, pro-
duced in more central collisions, can dissociate them.

The J/ψ survival probability in nuclear collisions is
then obtained, from the above considerations, by assum-
ing that about 40% of the J/ψ’s (those coming from χc
and ψ′ decays) produced inside the percolating cluster dis-
appear at the onset of percolation (those formed outside
the cluster, i.e. near the surface, are not affected). The re-
maining 60% of J/ψ’s (the directly produced ones) survive
until a cluster of hard enough partons is produced (b � 3–
4 fm). For a realistic comparison to the experimental data
one has, of course, to take into account impact parameter
fluctuations (see, for instance, [15]). The result is shown
in Fig. 8 [13], compared to the experimental data provided
by the NA50 Collaboration; one sees that the percolation
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Fig. 8. J/ψ survival probability as a function of the number
of participants, in Pb–Pb collisions at SPS. Experimental data
from NA50 Collaboration
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Fig. 9. J/ψ survival probability in In–In collisions at SPS

model reproduces quite well the features of the experimen-
tal data, in particular the “two-step” pattern.

The same model can be used to predict the survival
probability as function of the centrality in In–In collisions
at SPS. One finds, in this case, that the percolation onset
is reached in semi-central collisions (Npart � 140), but the
threshold for the dissociation of directly produced J/ψ’s
is never reached. One therefore expects, in this model, to
observe a suppression pattern similar to that presented in
Fig. 9, with one step only.

At higher energies, things can change. For instance at
RHIC energy the parton density, as given by the parton
distribution functions, is so high that at the percolation
onset the average transverse parton momentum is hard
enough to resolve all the charmonium states, including
the directly produced J/ψ’s. The suppression pattern has
again an unique step, but deeper than the previous case
(where only higher excited charmonium states were af-
fected) as shown in Fig. 10.
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Fig. 10. J/ψ survival probability in Au–Au collisions at RHIC

4 Conclusions

The two theoretical models presented here give a good de-
scription of the experimental data on J/ψ suppression in
Pb–Pb collisions at the SPS. The main difference is that
the dissociation model requires a thermalized medium,
whereas the percolation model does not. The thermal dis-
sociation model seems, presently, disfavored by lattice re-
sults where the J/ψ is found to survive up to very high
temperatures (2–2.5Tc), very difficult to accommodate in
this approach; but the lattice results [16], on the other
hand, are not yet conclusive since the widths of the char-
monium states are not calculated so it is difficult to de-
duce, from them, the real behavior of a J/ψ in a decon-
fined medium.

Another difference in the two models is evident in the
predictions for higher energies: the thermal dissociation
model always predicts a sequential suppression of the dif-
ferent quarkonium states, giving rise to a “two-step” pat-
tern (which can be more or less evident, depending on the
range of the impact parameter in which the two thresh-
olds occur), whereas the percolation approach can give,
as in the case of Au–Au at RHIC, a qualitatively different
suppression as a function of the centrality.

It should be noted that the “two-step” pattern ob-
served in the experimental data at SPS can be explained
by other mechanisms. In particular, it has been argued
that the second “drop”, in central Pb–Pb collisions, is
due to strong energy density fluctuations [17]: if this is
the case, the same pattern, i.e. the two steps, should be
observed in In–In collisions as well, where the percolation
model, on the contrary, predicts only one step.

I did not discuss here the charmonium suppression by
the percolation models of [9,10]: the agreement between
theory and experiment may seem poorer than the results
presented above [13], but one should keep in mind that
in these works the feed-down from χc and ψ′ is neglected
and, more importantly, the free parameters are tuned to
reproduce other observables of the nuclear interactions: in
view of that, the agreement obtained in the J/ψ case is
remarkable and it suggests that the percolation approach
can be extended to give a more general description of nu-
clear collisions.
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